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Abstract: This paper addresses the problem of computing the sample variance of datasets
scattered across a network of interconnected agents. A general procedure is outlined to allow
the agents to reach consensus on the variance of their local data, which involves two cascaded
(dynamic) average consensus protocols. Our implementation of the procedure exploits the
distributed ADMM, yielding a distributed protocol that does not involve the sharing of any
local, private data nor any coordination of a central authority; the algorithm is proved to
be convergent with linear rate and null steady-state error. The proposed distributed variance
estimation scheme is then leveraged to tune personalization in “personalized learning” where
agents aim at training a local model tailored to their own data, while still benefiting from the
cooperation with other agents to enhance the models’ generalization power. The degree to which
an agent tailors its local model depends on the diversity of the local datasets, and we propose to
use the variance to tune personalization. Numerical simulations test the proposed approach in
a classification task of handwritten digits, drawn from the EMNIST dataset, showing the better
performance of variance-tuned personalization over non-personalized training.

1. INTRODUCTION

In the context of distributed systems, the pursuit of con-
sensus has emerged as a focal point of research, driven
by the imperative to infer global information from lo-
cal, private data. The goal then is the development of
algorithms that enable the agents to converge upon a
shared understanding, or consensus, relying solely on peer-
to-peer interactions. Different functions of the local data
have been explored as objectives for consensus: the av-
erage (Moreau, 2005; Freeman et al., 2006; Zhu and
Mart́ınez, 2010; Kia et al., 2019; Bastianello and Carli,
2022), the maximum/minimum (Abdelrahim et al., 2017;
Deplano et al., 2021, 2022, 2023a; Lippi et al., 2023) and
the median (Sanai Dashti et al., 2019; Vasiljevic et al.,
2020; Deplano et al., 2023b).

However, aggregate metrics such as the average and me-
dian offer only a partial depiction of the distribution of lo-
cal data. The maximum/minimum offers an improvement
by establishing an upper bound on the distance between
the local data and the average, but still falls short. In this
paper, we are therefore interested in a more insightful met-
ric: variance, which quantifies the degree of diversity across
agents’ data. Joint knowledge of average and variance
has indeed proven useful in different applications, from
measuring the thermal comfort in buildings (Niazi et al.,
2020a,b), to monitoring tasks in traffic networks (Kawa-
hara et al., 2013; Guo et al., 2015), and to validating
performance of dynamic tracking protocols (Olfati-Saber
and Shamma, 2005; Speranzon et al., 2008).

The first contribution of this paper consists in a fully
distributed procedure to jointly estimate the average and
variance of the local, private data. The procedure, which
consists in cascading two (dynamic) average consensus
protocols, even though quite intuitive, appears to be
currently absent in the literature, to the best of our
knowledge. Our implementation resorts to the Distributed
Operator Theoretical (DOT) ADMM presented by us in
(Bastianello et al., 2025), which has been shown to have
superior performance with respect to other state-of-the-
art protocols (Deplano et al., 2023b). The main features
of the proposed algorithm are: linear convergence rate, null
steady-state error, and robustness initial conditions.

After establishing the proposed joint mean and variance
estimation algorithm, we discuss its usefulness in the
emerging field of personalized learning (T. Dinh et al.,
2020; Hanzely et al., 2023). A well-known concern in coop-
erative learning is the heterogeneity of the data collected
by each agent, and the goal of personalization is mitigating
this issue. The idea is to allow the agents to train local
models tailored to the agents’ data, instead of a global
consensus model. This paradigm shift ensures that a local
model has good predictive performance on local data,
while still generalizing well, owing to the collaboration
with other agents (Hanzely et al., 2023). In more practical
terms, personalization is often accomplished by regular-
izing local loss functions with a term that depends on
the other agents’ models. The weight of the personalizing
regularization thus determines the degree to which an
agent tailors its local model (T. Dinh et al., 2020).



Therefore, the second contribution of this paper is the
application of the proposed mean/variance estimation al-
gorithm to calibrate the personalization weights of each
agent. As a byproduct of our interest for personalized
learning, another contribution is the formulation of a new
fully distributed, personalized set-up, which differs from
the vast literature on federated set-ups that rely on a
central coordinator, and the outline of a solution strategy
that leverages an alternating minimization technique (At-
touch et al., 2010).. Unlike our approach, in which each
agent may locally decide the level of desired personaliza-
tion, other distributed set-ups manage personalization by
calibrating mixing weights between pairs of nodes, thus
encouraging clustering of nodes with similar local models
(Zantedeschi et al., 2020; Li et al., 2022).

Summarizing, the paper offers the following contributions:

• We propose a novel distributed variance estimation
algorithm for peer-to-peer networks, with linear, ex-
act convergence and robustness to re-initialization.

• We formalize a fully distributed set-up for personal-
ized learning, discussing how to calibrate personaliza-
tion through the variance across datasets.

• We showcase the performance of the estimation al-
gorithm and its use in personalized learning with
promising numerical results.

Paper’s structure: Section 2 presents the novel distributed
algorithm for joint mean and variance estimation, along
with its convergence analysis and numerical simulations.
Section 3 first formalizes the personalized learning problem
in fully distributed systems, then outlines the use of mean
and variance estimation for calibrating personalization,
and finally discusses promising numerical results for a
classification problem with the EMNIST dataset. Section 4
concludes the paper by outlining future lines of research.

Preliminaries on networks and graphs: We consider net-
works modeled by graphs G = (V, E), where V = {1, . . . , n}
with n ∈ N is the set of nodes, and E ⊆ V × V is the
set of edges connecting the nodes. A graph is said to be

Algorithm 1 Distributed joint mean/variance estimation

Initialization: Each agent i ∈ V arbitrarily initializes
the auxiliary variables {yij(0), zij(0)}j∈Ni

, choose the
relaxation constant α ∈ (0, 1), and the penalty ρ > 0.

for k = 1, 2, . . . each active agent i ∈ V
applies the local updates

µi(k) =
ui +

∑
j∈Ni

yij(k − 1)

1 + ρηi
(1a)

σ2
i (k) =

(ui − µi(k))2 +
∑

j∈Ni
zij(k − 1)

1 + ρηi
(2a)

for each agent j ∈ Ni

transmits the packets

pi→j(k) = 2ρµi(k) − yij(k − 1) (1b)

qi→j(k) = 2ρσ2
i (k) − zij(k − 1) (2b)

for each neighbor j ∈ Ni

updates the auxiliary variables

yij(k) = (1 − α)yij(k − 1) + αpj→i(k) (1c)

zij(k) = (1 − α)zij(k − 1) + αqj→i(k) (2c)

undirected if for any edge (i, j) ∈ E there is also (j, i) ∈ E .
An undirected graph G is said to be connected if there
exists a sequence of adjacent edges in E between any pair
of nodes i, j ∈ V. The set of neighbors of the i-th node
is denoted by Ni = {j ∈ V : (i, j) ∈ E} and we denote by
ηi = |Ni| the number of neighbors of node i.

2. DISTRIBUTED MEAN/VARIANCE ESTIMATION

Consider a network of n agents interacting according to
an undirected graph G = (V, E) and having access to some
local data ui ∈ R. The consensus problem consists in
the design of proper local interaction rules to enable the
estimation of a function of the local data ui ∈ R stacked
into u ∈ Rn. We are interested in the sample variance σ2

and “average” µ of all data formally defined next:

σ2 = var(u) :=
1

n

n∑
i=1

(
ui−µ

)2
, µ = avg(u) :=

1

n

n∑
i=1

ui.

For simplicity, we consider here the base formulation of the
problem for scalar data, but both the formulation of the
problem and the algorithm proposed in the next section
naturally extend to vector data ui ∈ Rp by considering
parallel consensus problems for each data entry.

2.1 Proposed solution via time-varying optimization

Let k ∈ N represent discrete instant of times at which the
agents communicate and update their state. The proposed
distributed protocol is implemented in Algorithm 1, which
consists of two cascaded operations as in Fig. 1:

a) Each agent i ∈ V estimates the average of the
constant data ui ∈ R by running an average consensus
protocol and stores its estimation in µi(k);

b) Each agent i ∈ V tracks the average of the time-
varying data (ui − µi(k))2 ∈ R – that is the variance
of data ui – by running a dynamic average consensus
protocol and stores its estimation in σ2(k).

Mean
estimation

Variance
estimationui µi(k)

−
+

(ui − µi(k))2 σ2
i (k)

Fig. 1. Flowchart representing Algorithm 1.

Letting si(k) ∈ R be the signal of interest, each of
the above consensus problems can be cast into a (time-
varying) distributed optimization problem of the kind:

x⋆(k) = argmin
x1,...,xn

n∑
i=1

1

2
|xi − si(k)|2,

s.t. xi = xj ∀(i, j) ∈ E ,
(3)

where for the operation a) it must be used si(k) = ui, and
for operation b) it must be used si(k) = (ui − µi(k))2. We
have the following basic result.

Proposition 1. Consider a network of n agents interacting
through to an undirected graph G = (V, E) and consider
the optimization problem in eq. (3). If G is connected, the
solution is x⋆(k) = µk1 where µk = avg(s1(k), . . . , sn(k)),
and 1 is the vector of ones.

Proof. The proof is trivial and can be carried out follow-
ing the steps in (Deplano et al., 2023b, Proposition 1).



In Algorithm 1 the two consensus procedures for estimat-
ing the average and the variance are carried out by re-
sorting to the DOT-ADMM Algorithm (Bastianello et al.,
2021, 2025). More precisely, eqs. (1a)-(1b)-(1c) and (2a)-
(2b)-(2c) are the explicit updates of the DOT-ADMM ap-
plied to the distributed optimization problem in the form
of eq. (3) when si(k) = ui and si(k) = (ui − µi(k))2, re-
spectively (cfr. (Deplano et al., 2023b, Lemma 1) and (Bas-
tianello et al., 2021, Section III-B)).

Remark 2. Even though the strategy outlined in Section 2.1
and depicted in Figure 1 could be implemented by using
any dynamic average consensus algorithms, our choice to
use DOT-ADMM lies in its superior performance and
robustness features. We refer the interested reader to (De-
plano et al., 2023b) for a comparison of the DOT-ADMM
performance against other state-of-the-art dynamic aver-
age consensus protocols.

The following theorem proves the convergence of the
proposed algorithm, which occurs with a linear rate and a
null steady-state error.

Theorem 3. Consider a network G = (V, E) executing
Algorithm 1 with local data ui ∈ R. If the graph G is
connected, the root mean squared errors eµ(k), eσ(k) on
the estimation of the mean and variance, respectively,
converge to zero with a linear rate.

Proof of Theorem 3: Let 1 and 0 denote the vectors of ones
and zeros, respectively. Denote µ = [µi]i∈V , σ = [σi]i∈V
y = [yij ]i∈V,j∈Ni

, z = [zij ]i∈V,j∈Ni
. Moreover, define

A = blk diag{1ηi
}ni=1, D = blk diag{(ρηi)

−1}ni=1, and P
as the permutation matrix swapping the ij-th and ji-th
components of the y (or z) vector. Then Algorithm 1 can
be written in the compact form (Bastianello et al., 2025):

µ(k)=D−1(u+A⊤y(k)) (4a)

y(k)=(1−α)y(k−1)−αPy(k−1)+2αρPAµ(k) (4b)

σ2(k)=D−1
(
(u−µ(k))⊙2 +A⊤z(k)

)
(4c)

z(k)=(1−α)z(k−1)−αPz(k−1)+2αρPAσ2(k) (4d)

where ⊙ is the Hadamard (element-wise) exponent. The
first two equations (4a), (4b) are used to compute the mean
of the values in u, while (4c), (4d) are used to compute the
variance. Notice that µ(k) feeds into (4c), thus creating
a chain of two systems (cf. Fig. 1). Since u is constant,
by (Bastianello et al., 2025) we know there exist ζ ∈ (0, 1)
and C > 0 such that:

d(y(k)) ≤ ζd(y(k − 1)), and eµ(k) ≤ Cd(y(k)),

where d is the distance function from the set of fixed points
{y | (I + P )y = 2ρ avg(u)1}. This implies that the error
on the mean eµ(k) converges to zero, i.e.,

lim
k→∞

eµ(k) = 0 ⇔ lim
k→∞

µi(k) = avg(u), (5)

and it does so with a linear rate, completing the first
part of the proof. The variance estimator tracks the time-
varying quantity v(k) = (u− µ(k))⊙2 due to its depen-
dence on the running estimate of the mean. Similarly,
by (Deplano et al., 2023b)

dk(z(k)) ≤ ζdk−1(z(k − 1)) + C ′ε(k) (6a)∣∣∣∣σ2(k) − avg(v(k))1
∣∣∣∣ ≤ Cdk(z(k)) (6b)

for some C ′, C > 0, where dk is the distance function
from the set of time-varying fixed points {y | (I + P )y =
2ρ avg(v(k))1} and where

ε(k) = (avg(v(k)) − avg(v(k − 1)))
2
.

which is such that

lim
k→∞

ε(k)=

(
n∑

i=1

(ui−avg(u))2−(ui−avg(u))2

)2

=0.

Iterating (6a) yields

dk(z(k)) ≤ ζkd0(z(0)) + C ′
k−1∑
h=0

ζk−hε(k).

Since ε(k) decays, then by (Sundhar Ram et al., 2010,
Lemma 3.1(a)) it holds

lim
k→∞

k−1∑
h=0

ζk−hε(k) = 0,

Thus, from eq. (6) follows limk→∞ dk(z(k)) = 0 and also

lim
k→∞

eσ(k) = lim
k→∞

∣∣∣∣σ2(k) − var(u)1
∣∣∣∣

= lim
k→∞

∣∣∣∣σ2(k) − avg((u− µ(k))⊙2)1
∣∣∣∣ = 0.

Together with eq. (5), this completes of the proof. □

2.2 Numerical simulations

In this section we evaluate the performance of Algorithm 1
for distributed mean and variance estimation. The simula-
tions were implemented using tvopt (Bastianello, 2021).

We start by displaying in Figure 2(left) the error trajec-
tories of Algorithm 1 for both the mean and the variance,
that is ||µ(k) − avg(u)1|| and

∣∣∣∣σ2(k) − var(u)1
∣∣∣∣. The re-

sults are derived by applying the algorithm to a random
geometric graph with n = 25 nodes and mean degree 12.
The data are randomly drawn according to ui ∼ N (0, 10),
and we set the parameters ρ = 1, α = 0.5. As we can see,
both the mean and the variance are correctly computed
by Algorithm 1, except for errors due to the numerical
precision. We remark that the variance estimation seems
to be more sensitive to rounding errors, an aspect we will
explore in future research.

We conclude by also testing Algorithm 1 to track the
mean and variance of time-varying data {u(k)}k∈N, on a
random graph. The data changes every 100 iterations and
are drawn as ui ∼ N (0, 10). The tracking errors depicted
in Figure 2(right) show that both the mean and variance
estimates converge to the true mean and variance while
the data remain unchanged, thus showing robustness to
re-initialization.
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Fig. 2. Error trajectories of Algorithm 1 on a random
geometric graph with n = 25: (left) constant data
ui; (right) time-varying data ui(k).



3. APPLICATION TO PERSONALIZED LEARNING

In distributed learning, each agent i ∈ V holds a local
data set {ai,h, bi,h}mi

h=1 of dimension mi ∈ N and aims at
estimating the parameters of the common regression model
g such that the sum of local partial costs fi is minimized:

fi(x) =

mi∑
h=1

g(x,ai,h, bi,h).

In other words, the problem is that of making the agents
cooperatively train a model x⋆

dis common for everyone by
exploiting all data across the datasets, hopefully obtaining
a better model than the local ones:

x⋆
dis = argmin

x

∑
i∈V

fi(x).

This problem can be equivalently formulated as a dis-
tributed optimization problem as follows:

min
x1,...,xn

∑
i∈V

fi(xi) (7a)

s.t. xi = xj if (i, j) ∈ E (7b)

In many applications there may be an interest in providing
personalization: the model trained by each agent is tailored
according to the specific data that it stores. One method of
implementing personalization is by regularizing the costs.
In particular, we choose to reformulate the problem as

(x⋆
per,y

⋆
1,per,··· ,y⋆

n,per)= argmin
x,y1,...,yn

∑
i∈V

fi(yi)+
λi

2
||yi−x||2,

whose equivalent distributed formulation is given by

min
x1,...,xn,y1,...,yn

∑
i∈V

fi(yi) +
λi

2
||yi − xi||2, (8a)

s.t. xi = xj if (i, j) ∈ E . (8b)

This novel problem formulation uses the regularization
terms to keep locally trained models y⋆

i,per close to the
global model x⋆

per, which is, in general, different from
the global model x⋆

dis obtained without personalization.
To the best of our knowledge, personalization techniques
have been studied exclusively in the federated set-up,
while problem (8) can be solved in a fully distributed
fashion. For instance, the concept of personalization we
employ is similar to that of (T. Dinh et al., 2020), but
differs in two crucial points: 1) the personalized problem
in (T. Dinh et al., 2020) is formulated as a bi-level
optimization problem, while our formulation is a direct
extension of the consensus optimization problem (7); 2)
we allow for uncoordinated personalization weights, i.e.,
λi are heterogeneous, while in (T. Dinh et al., 2020) it
is assumed that they are all equal to a common value of
λ = λi. Choosing uncoordinated weights allows the agents
to tune their desired degree of personalization, indeed:

• Complete personalization: if λi = 0, then agent i only
relies on its own data to train its local model.

• No personalization: if λi = ∞, then agent i fully
collaborates in order to train a common model with
other agents. If all agents set λi = ∞, problem (8)
reduces to problem (7).

• Partial personalization: if λi ∈ (0,∞), then agent i
partially collaborates with other agents to train both
a common model and a personalized model.

3.1 Solving the personalized problem

The solution of (8) is not an easy task, as the cost
function depends on both the interconnected variables x
and y, but the consensus constraints only apply to y.
Therefore, standard distributed optimization algorithms
cannot be directly applied. In the following we discuss a
possible approach to the solution of (8), while a more in-
depth analysis is left to future work. The idea is to apply
the divide-and-conquer heuristic of alternating minimiza-
tion (Attouch et al., 2010). That is, we alternate between
a minimization in terms of x with a fixed value of y, and
vice versa. In particular, letting

h(x,y) :=
∑
i∈V

fi(yi) +
λi

2
||yi − xi||2,

we apply

y(k + 1) = argmin
y

h(x(k),y) (9a)

x(k + 1) = argmin
x

h(x,y(k + 1)) (9b)

s.t. xi = xj if (i, j) ∈ E .
Since h(x,y) is separable in y, then the minimization (9a)
can be carried out independently by each agent, namely,

yi(k + 1) = argmin
yi

fi(yi) +
λi

2
||yi − xi(k)||2. (10)

Problem (10) may have a closed form solution, as in the
case of the quadratic costs in Section 3. But if this is not
the case, the agents need to approximate its solution by the
use of e.g. gradient descent. Given the solution to eq. (9a),
the term fi(yi(k+1)) in h(x,yi(k+1)) becomes constant,
thus the update in eq. (9b) reduces to

{xi(k + 1)}i∈V = argmin
x1,...,xn

∑
i∈V

λi

2
||yi(k + 1) − xi||2

s.t. xi = xj if (i, j) ∈ E .
(11)

In what follows, we choose to solve the above problem
by resorting DOT-ADMM (Bastianello et al., 2025), and
leave to future work the exploration of alternatives such
as gradient tracking.

3.2 Choice of personalized weights via variance estimation

The strategy we propose for selecting appropriate person-
alized weights can be outlined in three main steps:

1) Local training : Each agent independently trains its
own model y⋆

i,loc without considering the models of other
nodes:

y⋆
i,loc = argmin

y
fi(y); (12)

2) Model distribution analysis: The agents collaborate
to assess the similarity between their local models, thus
allowing them to gauge the degree of alignment or dis-
crepancy among their respective models. In particular,
the agents cooperatively compute the (component-wise)
average µ and variance σ2 of the models by executing
Algorithm 1.

3) Personalized learning : Finally, nodes integrate insights
from other models to determine a personalized model
that encapsulates the combined knowledge and nuances
identified across the network. Each agent sets λi based



Table 1. Accuracy comparison across all test sets for different levels of personalization.

Param. Model Min Mean Max

Global model without personalization x⋆
dis 98.1% 98.1% 98.1%

Global model with personalization ∀w ≥ 0 x⋆
per 98.1% 98.1% 98.1%

Local model with personalization w = 10 y⋆
i,per 97.6% 98.1% 98.6%

Local model with personalization w = 1 y⋆
i,per 96.2% 98.3% 99.5%

Local model with personalization w = 0.1 y⋆
i,per 94.3% 98.1% 100%

Local model without cooperation y⋆
i,loc 59.5% 85.0% 94.3%

on the distance of its own local model from the mean,
saturated by the standard deviation:

λi =
w

avg(max{0,
∣∣y⋆

i,loc − µ
∣∣− σ})

, (13)

where w ≥ 0 is an arbitrary tuning parameter.

The larger the distance of y⋆
i,loc from the average µ,

the smaller the regularization weight λi → 0, which
means that more personalization is applied. If instead,
the distance is lesser than the standard deviation, no
personalization is applied, i.e., λi = ∞. In the latter case,
agent i can directly impose a local constraint yi = xi

instead of λi = ∞, i.e., its personalized model y⋆
i,per

coincides with the global model x⋆
per.

3.3 Numerical results on the EMNIST dataset

We provide a numerical simulation by considering the well-
known EMNIST database, an extension (E) of the mod-
ified (M) version of the National Institute of Standards
and Technology (NIST) database, containing digitalized
black-and-white pictures (28 × 28 pixels) of handwritten
digits and uppercase/lowercase handwritten letters. The
EMNIST dataset presents the data in different separate
data hierarchies, among which is the “by author” hierar-
chy, containing the segmented character classes organized
by writer.

Our simulation takes into consideration a classification
task between two digits that could be confused depending
on the specific handwriting, which are the number 3 and
the number 8. We take into consideration only those
writers for which there are at least 15 labelled entries in
the training set (i.e., mi ≥ 15) and at least 5 entries in
the test set, yielding to a total number of n = 40 writers.
Finally, we consider the classic linear regression model as
a common regressor. For each writer i ∈ {i, . . . , n} and
picture h ∈ {1, . . . ,mi}, the vector ai,h ∈ [0, 1]p (where
p = 28 · 28 = 784) is the vector describing the BW level
of each pixel, row by row, of the corresponding picture,
while bi,h ∈ {−1,+1} is a scalar denoting that the picture
is either a 3 (when equal to −1) or an 8 (when equal to +1).
Let Ai ∈ Rmi×p and bi ∈ Rmi be the matrix and vector
constructed by concatenating all features ai,h and labels

bi,h, then the local cost reads as fi(y) = ||Aiy − bi||2.
Let us now discuss the accuracy of the models on the test
sets for all cases of personalization detailed in Table 1.

Complete personalization: When the writers train their
own model y⋆

i based on their local dataset only as in
eq. (12), they obtain a model that is quite performing
on their own test set but is defective when tasked in
distinguishing digits written by others. Indeed, about half
of the writers’ models achieves an accuracy on the joint

test set lower than 85%, the average accuracy across all
agents models. Moreover, the accuracy of each local model
is at most 94% with worst cases as low as 59%.

No personalization: Consider now the case in which the
writers fully cooperate to train a model that better fits
all the datasets, i.e., they cooperate to solve problem (7)
in a distributed way. As might be expected, the common
model on which the writers agree upon has much better
performance on the joint test set when compared to the
local models, achieving an accuracy of 98.1%.

Partial personalization: We now compare these results
with those obtained through a personalized learning ap-
proach, in which the writers train a personalized model by
also exploiting the information received by the other au-
thors. This is done by solving the distributed optimization
problem in eq. (8) where the personalized weights (13)
are chosen exploiting the mean and variance among the
local trained models y⋆

i computed through Algorithm 1.
When the tuning parameter is selected equal to w = 1,
the average accuracy is 98.3%, slightly higher than the
accuracy obtained without any personalization. Moreover,
there are writers achieving an even higher accuracy of
99.4%, while the worst accuracy is about 96.2%, much
higher than the accuracy obtained with complete person-
alization. It is also interesting to see that when the tuning
parameter is selected to w = 0.1 some of the writers obtain
a model with an accuracy of 100%, while the average
accuracy across the writers remains equal to the standard
distributed optimization without personalization.

4. DISCUSSION AND FUTURE PERSPECTIVES

We have presented a novel personalized learning approach
in a fully distributed set-up, where personalization is
calibrated by exploiting an original algorithm to jointly
compute the average and variance across the local, private
datasets. Numerical simulations indicate that agents are
motivated to employ the proposed personalized cooper-
ative learning approach for two main reasons: 1) the ex-
pected accuracy of the personalized model remains greater
than or equal to the expected accuracy without personal-
ization, while the maximum achievable accuracy increases
up to 100%; 2) the agents jointly compute a global model
whose accuracy is comparable with the global model de-
rived without personalization, which remains as a valuable
alternative for the agents.

This work sets the stage for several promising lines of
future research. By leveraging the distributed variance es-
timation algorithm, agents could autonomously assess the
coherence of their own datasets, determining the extent to
which they should rely on information from other agents’
datasets by appropriately calibrating the parameters of



personalized learning. Additionally, personalized learning
could help in mitigating the impact of malicious behavior
exhibited by some agents attempting to make the global
model diverge far from the optimal solution. Furthermore,
it could be interesting to consider real-world scenarios
where local datasets may undergo updates over time and
agents may join into or depart from the learning process.
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